Active-set Methods for Submodular Minimization Problems

نویسندگان

  • K. S. Sesh Kumar
  • Francis Bach
چکیده

We consider the submodular function minimization (SFM) and the quadratic minimization problems regularized by the Lovász extension of the submodular function. These optimization problems are intimately related; for example, min-cut problems and total variation denoising problems, where the cut function is submodular and its Lovász extension is given by the associated total variation. When a quadratic loss is regularized by the total variation of a cut function, it thus becomes a total variation denoising problem and we use the same terminology in this paper for “general” submodular functions. We propose a new active-set algorithm for total variation denoising with the assumption of an oracle that solves the corresponding SFM problem. This can be seen as local descent algorithm over ordered partitions with explicit convergence guarantees. It is more flexible than the existing algorithms with the ability for warm-restarts using the solution of a closely related problem. Further, we also consider the case when a submodular function can be decomposed into the sum of two submodular functions F1 and F2 and assume SFM oracles for these two functions. We propose a new active-set algorithm for total variation denoising (and hence SFM by thresholding the solution at zero). This algorithm also performs local descent over ordered partitions and its ability to warm start considerably improves the performance of the algorithm. In the experiments, we compare the performance of the proposed algorithms with state-of-the-art algorithms, showing that it reduces the calls to SFM oracles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base∗

We consider an application of the minimum-norm-point algorithm to submodular function minimization. Although combinatorial polynomial algorithms for submodular function minimization (SFM) have recently been obtained, there still remain (open) problems of reducing the complexity of the SFM algorithms and of constructing a practically fast SFM algorithms. We show some possible approach to the pro...

متن کامل

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We...

متن کامل

Exact Solution of Permuted Submodular MinSum Problems

In this work we show, that for each permuted submodular MinSum problem (Energy Minimization Task) the corresponding submodular MinSum problem can be found in polynomial time. It follows, that permuted submodular MinSum problems are exactly solvable by transforming them into corresponding submodular tasks followed by applying standart approaches (e.g. using MinCutMaxFlow based techniques).

متن کامل

Efficient Minimization of Decomposable Submodular Functions

Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel ...

متن کامل

Combinatorial Algorithms for Submodular Function Minimization and Related Problems

Submodular functions are common in combinatorics; examples include the cut capacity function of a graph and the rank function of a matroid. The submodular function minimization problem generalizes the classical minimum cut problem and also contains a number of other combinatorial optimization problems as special cases. In this thesis, we study submodular function minimization and two related pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017